INFORMATION SHEET Duration times of cylinders

			Minutes at Nominal Breathing Rate	
Cylinder volume	Pressure	Litres of air	401pm	50lpm
3	200 bar	600	15	12
3	300 bar	820	20	16
4.7	300 bar	1300	32	25
6	200 bar	1200	30	24
6.8	300 bar	1860	46	37
9	200 bar	1800	45	36
9	300 bar	2460	61	49

How this is calculated

For 200 bar cylinders

If you take the water capacity of the cylinder and multiply it by the pressure of the cylinder it will provide you with the amount of litres of air in the cylinder when the cylinder is charged to that pressure.

Therefore: - 6 litres $\times 200$ bar $=1200$ litres of free air
The next step is to divide that amount of air by the nominal breathing rate of the user which in most cases is assumed to be 40lpm

Therefore: - 1200 litres / 40lpm = 30 minutes

For 300 Bar cylinders

With 300 bar air a compressibility factor needs to be included in the calculation. At 300 bar the compressibility factor of air is 0.91 .

If you take the water capacity of the cylinder and multiply it by the pressure of the cylinder and then the compressibility factor it will provide you with the amount of litres of air in the cylinder when the cylinder is charged to that pressure.

Therefore: - 6.8 litres $\times 300$ bar $\times 0.91=1860$ litres of free air
The next step is to divide that amount of air by the nominal breathing rate of the user which in most cases is assumed to be 40lpm

Therefore: - 1860 litres / 40lpm = 46 minutes

